科技的發展正在加速改變我們的生活。以前,我們購物埋單時,收銀員會問“現金還是刷卡”,現在,這句話則變成了“還是支付寶?”以前,我們上街要帶現金,后來變成帶卡,現在只需帶手機。
然而,你想過沒有?未來某一天,我們上街連手機都不用帶了,只要“帶臉”就行。因為,我們正在邁向“刷臉時代”。到時,把你的所有信息、財產都跟你的臉綁定了,出門“刷臉”就行。今天,我們就來詳細了解一下人臉識別技術:
人臉識別概述
人臉識別,是基于人的臉部特征信息進行身份識別的一種生物識別技術。用攝像機或攝像頭采集含有人臉的圖像或視頻流,并自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉進行臉部的一系列相關技術,通常也叫做人像識別、面部識別。
人臉識別是一項熱門的計算機技術研究領域,它屬于生物特征識別技術,是對生物體(一般特指人)本身的生物特征來區分生物體個體。
生物特征識別技術所研究的生物特征包括臉、指紋、手掌紋、虹膜、視網膜、聲音(語音)、體形、個人習慣(例如敲擊鍵盤的力度和頻率、簽字)等。
相應的識別技術就有人臉識別、指紋識別、掌紋識別、虹膜識別、視網膜識別、語音識別(用語音識別可以進行身份識別,也可以進行語音內容的識別,只有前者屬于生物特征識別技術)、體形識別、鍵盤敲擊識別、簽字識別等。
三大關鍵技術
1、基于特征的人臉檢測技術
通過采用顏色、輪廓、紋理、結構或者直方圖特征等進行人臉檢測。
2、基于模板匹配人臉檢測技術
從數據庫當中提取人臉模板,接著采取一定模板匹配策略,使抓取人臉圖像與從模板庫提取圖片相匹配,由相關性的高低和所匹配的模板大小確定人臉大小以及位置信息。
3、基于統計的人臉檢測技術
通過對于“人臉”和“非人臉”的圖像大量搜集構成的人臉正、負樣本庫,采用統計方法強化訓練該系統,從而實現對人臉和非人臉的模式進行檢測和分類。
四大特征
1、幾何特征
從面部點之間的距離和比率作為特征,識別速度快,內存要求比較小,對于光照敏感度降低。
2、基于模型特征
根據不同特征狀態所具有概率不同而提取人臉圖像特征。
3、基于統計特征
將人臉圖像視為隨機向量,并用統計方法辨別不同人臉特征模式,比較典型的有特征臉、獨立成分分析、奇異值分解等。
4、基于神經網絡特征
利用大量神經單元對人臉圖像特征進行聯想存儲和記憶,根據不同神經單元狀態的概率實現對人臉圖像準確識別。
難點
1、光照問題
光照變化是影響人臉識別性能的zui關鍵因素,對該問題的解決程度關系著人臉識別實用化進程的成敗。由于人臉的3D結構,光照投射出的陰影,會加強或減弱原有的人臉特征。尤其是在夜晚,由于光線不足造成的面部陰影會導致識別率的急劇下降,使得系統難以滿足實用要求。
同時,理論和實驗還證明同一個體因光照不同引起的差異,大于同一光照下不同個體之間的差異。光照問題是機器視覺中的老問題,在人臉識別中的表現尤為明顯。解決光照問題的方案有三維圖像人臉識別和熱成像人臉識別。但這兩種技術還遠不成熟,識別效果不盡人意。
2、姿態問題
人臉識別主要依據人的面部表象特征來進行,如何識別由姿態引起的面部變化就成了該技術的難點之一。姿態問題涉及頭部在三維垂直坐標系中繞三個軸的旋轉造成的面部變化,其中垂直于圖像平面的兩個方向的深度旋轉會造成面部信息的部分缺失。使得姿態問題成為人臉識別的一個技術難題。
針對姿態的研究相對比較的少,目前多數的人臉識別算法主要針列正面、準正面人臉圖像,當發生俯仰或者左右側而比較厲害的情況下,人臉識別算法的識別率也將會急劇下降。
3、表情問題
面部幅度較大的哭、笑、憤怒等表情變化同樣影像著面部識別的準確率。現有的技術對這些方面處理得還不錯,論是張嘴還是做一些夸張的表情,計算機都可以通過三維建模和姿態表情校正的方法把它糾正出來。
4、遮擋問題
對于非配合情況下的人臉圖像采集,遮擋問題是一個非常嚴重的問題。特別是在監控環境下,往往被監控對象都會帶著眼鏡、帽子等飾物,使得被采集出來的人臉圖像有可能不完整,從而影響了后面的特征提取與識別,甚至會導致人臉檢測算法的失效。
5、年齡變化
隨著年齡的變化,一個人從少年變成青年,變成老年,他的容貌可能會發生比較大的變化,從而導致識別率的下降。對于不同的年齡段,人臉識別算法的識別率也不同。
這個問題zui直接的例子就是*照片的識別,在我國*的有效期一般都是20年,這20年間每個人的容貌必然會發生相當大的變化,所有在識別上也同樣存在很大的問題。
6、人臉相似性
不同個體之間的區別不大,所有的人臉的結構都相似,甚至人臉器官的結構外形都很相似。這樣的特點對于利用人臉進行定位是有利的,但是對于利用人臉區分人類個體是不利的。
7、動態識別
非配合性人臉識別的情況下,運動導致面部圖像模糊或攝像頭對焦不正確都會嚴重影響面部識別的成功率。在地鐵、高速公路卡口、車站卡口、超市反扒、邊檢等安保和監控識別的使用中,這種困難明顯突出。
8、人臉防偽
偽造人臉圖像進行識別的主流欺騙手段是建立一個三維模型,或者是一些表情的嫁接。隨著人臉防偽技術的完善、3D面部識別技術、攝像頭等智能計算視覺技術的引入,偽造面部圖像進行識別的成功率會大大降低。
9、圖像質量問題
人臉圖像的來源可能多種多樣,由于采集設備的不同,得到的人臉圖像質量也不一樣,特別是對于那些低分辨率、噪聲大、質量差的人臉圖像(如手機攝像頭拍攝的人臉圖片、遠程監控拍攝的圖片等)如何進行有效地人臉識別是個需要關注的問題。
同樣的,對于高分辨圖像對人臉識別算法的影響也需要進一步的研究。現在,我們在人臉識別時,一般采用的都是相同尺寸,清晰度很接近的人臉圖片,所以圖像質量問題基本可以解決,但是面對現實中更加復雜的問題,還需要繼續優化處理。
10、樣本缺乏
基于統計學習的人臉識別算法是目前人臉識別領域中的主流算法,但是統計學習方法需要大量的訓練。由于人臉圖像在高維空間中的分布是一個不規則的流形分布,能得到的樣本只是對人臉圖像空間中的一個極小部分的采樣,如何解決小樣本下的統計學習問題有待進一步的研究。
此外,現在參與訓練的人臉圖像庫基本都是外國人的圖像,有關中國人、亞洲人的人臉圖像庫少之又少,給訓練人臉識別模型增加了難度。